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§  Simulations 
–  Multi-physics (FLASH) – 10 PB 
–  Cosmology (NyX) – 10 PB 
–  Plasma physics (VPIC) – 1 PB 

§  Experimental and Observational 
data 
–  High energy physics (LHC) – 100 PB 
–  Cosmology (LSST) – 60 PB 
–  Genomics – 100 TB to 1 PB 

§  Scientific applications rely on 
efficient access to data 
–  Storage and I/O are critical requirements 

of High Performance Computing (HPC) 

Data-driven science 
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Storage system transformation in HPC  
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•  IO performance gap in HPC storage is a significant bottleneck 
because of slow disk-based storage  

•  SSD and new memory technologies are trying to fill the gap, but 
increase the depth of storage hierarchy 

 



Challenges of deep storage hierarchy 

•  Modes of moving data between the layers 
–  Offline: Stage out after writing the data 

•  E.g., Cray DataWarp provides stage_in and stage_out commands 
–  In applications: API for moving data  

•  Cray DataWarp provides an API for moving data in and out of burst 
buffers 

–  Transparent caching 
•  Burst buffer servers move data transparently 

•  Challenges 
–  Inefficiency : Existing methods for staging in/out data to/from burst 

buffers (BB) compete for resources on BB servers 
–  Burden on users : Users or applications have to explicitly make the 

data movement decisions, which could lead to inefficiency 
–  Limited to one level: Transparent caching is aware of a single level 

storage 

4 Data Elevator 



Our solution: Data Elevator for moving data 
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•  Contributions 
-  Low-contention data movement library for hierarchical 

storage systems 
-  Offload of data movement task to a few compute nodes 

or cores 
-  Data Elevator on NERSC’s Cori system 

-  With a couple of science applications, demonstrated that 
Data Elevator is 4X faster than Cray DataWarp stage_out 
and 4X faster than writing data to parallel file system 

•  Benefits of using Data Elevator 
-  Transparent data movement: Applications using HDF5 

specify destination of data file and the Data Elevator 
transparently moves data from a source to the destination 

-  Efficiency: Data Elevator reduces contention on BB 
-  In transit analysis: While data is in a faster storage 

layer, analysis can be done in the data path 

 



Background – HDF5 

§  HDF5 – Hierarchical Data Format, v5 developed and 
maintained by The HDF Group 
•  First version of HDF5 released in 1998  

§  Open file format	
–   Designed for high volume or complex data 
–   Parallel I/O library 

§  Open source software 
–   Works with data in the format 

§  A data model 
–   Structures for data organization and specifica&on	
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HDF5 is like … 
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Background – HDF5 Virtual Object Layer (VOL) 
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•  Data Elevator uses VOL for 
intercepting HDF5 calls 

•  VOL 
- Abstract HDF5 object storage to 

enable developers to easily use 
HDF5 on novel storage systems 

- Binary instrumentation approach 
allows intercepting HDF5 calls 
without code changes 

- Allows all HDF5 applications to 
migrate to future storage systems 
and mechanisms with no source 
code modifications 
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Background – Burst buffer on Cori system 
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•  Fact sheet 
-  Cori is a Cray XC40 system 
-  144 burst buffer nodes 
-  Each server has two Intel 

P3608 3.2 TB NAND Flash 
SSDs 

-  Cray DataWarp® manages 
the burst buffer 
-  stage_in and stage_out 

commands 
-  BB API for programmatically 

move data 
-  Allows async data 

transfers 
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Data Elevator design 

•  Implementation challenges 
–  Transparently intercepting I/O calls  
–  Moving data between storage layers 

efficiently w/ low contention 
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•  Solutions 
–  IOCI – IO Call Interceptor library - VOL 
–  Transparent & Efficient Data Mover 

processes – Concurrent MPI job 



Metadata for managing the state of data 

•  Metadata Table to manage the data movement status 
–  Data written to BB 
–  Data is written to BB 
–  Request to analyze data and start analysis 
–  All data reads are done 
–  Data is being written to PFS 
–  Data is moved to PFS 
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Optimizations 

•  Scalable and low-contention parallel data movement 
•  Data Elevator processes run on compute nodes 

•  Allows scaling up or down the number of data movement processes 
•  BB server resources are entirely used for I/O 

•  Overlapping data reads from BB and writes to PFS 
•  Data is written to file system in chunks 
•  Allows reading data from BB and writing to PFS can be overlapped 

•  Stripe size alignment 
•  Parallel file systems, such as Lustre, provide striping optimizations 

•  Stripe size, stripe count, alignment, etc. 

•  In transit analysis, while data is in a burst buffer level 
•  Analysis jobs can poll the metadata table for availability of data 
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Experimental set up 

•  Platform – NERSC Cray XC40 system, Cori 
•  Benchmarks and applications 

•  VPIC – Plasma Physics code simulating magnetic reconnection 
(solar weather) 

•  CAMR – Climate Adaptive Mesh Refinement code simulating 
climate at high resolutions (1km resolution) 

•  Metrics 
•  End-to-end execution time – Total execution time of the 

application, including I/O and data movement 
•  End-to-end data movement time – Time to move data from 

memory to Lustre file system (final destination of the data) 
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Data Elevator – Tuning space exploration 

•  MPI-IO Collective (two-phase) vs. Independent modes 

•  Overlapping BB reads w/ PFS writes 

•  Striping alignment on PFS 
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Data Elevator – Tuning space exploration 

•  Sharing compute cores vs. dedicated Data Elevator 
nodes 

•  Data Elevator size 

•  Metadata overhead 
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Performance comparison with benchmarks 

•  Staging out performance – Cray DataWarp vs. Data Elevator 
•  1K procs 
•  DataWarp – 144 nodes 
•  Data Elevator – 64 processes 
•  Data Elevator is faster than DataWarp by 14% to 22% 
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Performance with Plasma physics simulation 

•  Total execution time of running VPIC code for 20 time steps, writing 
a file at the end of each time step – data write intensive workload 

•  Data Elevator 
•  1.7X faster than PFS 
•  1.8X faster than DataWarp stage_out command 
•  4.2X faster than DataWarp API 
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Performance with climate simulation 
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•  Total execution time of running CAMR code for 20 time steps, 
writing a file at the end of each time step – compute intensive 
workload 

•  Data Elevator 
•  4X faster than PFS 
•  1.2X faster than DataWarp stage_out command 
•  3.3X faster than DataWarp API 

1K cores 



Performance of in transit data analysis - Querying  
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•  Querying data while it is in BB 
•  Indexing is 2X faster 
•  Querying is 6.5X faster 



Conclusions 

•  Moving data in hierarchical storage needs to be: 
•  Efficient and cause low contention on BB servers 
•  Transparent transfers without burden on users and/or app 

developers 

•  Data Elevator achieves these goals  
• … for writing data to PFS 

•  Future work 
•  Caching and prefetching for data reads 
•  More than two levels (node-local, campaign, and archival storage 

layers) 
•  Tuning of energy consumption and compute node efficiency 

Contact: Suren Byna, LBNL, (SByna@lbl.gov) 
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